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ON RELIABLE CONTROL SYSTEM DESIGNS WITH AND WITHOUT FEEDBACK RECONFIGURATIONS *

J. D. Birdwell

Perris 308

Department of Electrical Engineering
The University of Tennessee
Xnoxville, TN 137916 -

Abstract

This paper contains an overvisw of a theoretic-
al framework for the design of reliable multivariable
control systems, with special emphasis on actuator
failures and necessary actuator redundancy levels.
Using a linear model of the system, with Markovian
failure probabilities and quadratic performance in-
dex, an optimal stochastic control problem is posed
and solved. The solution requires the iteration of
a set of highly coupled Riccati-like matrix differ-
ence equations; if these converge one has a reli-
able design; if they diverge, the design is unn-
ulblc, and the system design cannot be stabilized.

s addition, it is shown that the existence of
a stabilizing constant feedback gain and the reli-
ability of its implementation is equivalent to the
convergence properties of a set of coupled Riccati-
like matrix difference equations.

In susmary, these results can be used for off-
line studies relating the open loop dynamics, re-
quired performance, actuator mean time to failure,
and functional or identical actuator redundancy,
with and without feedback gain reconfiguration
strategies.

1. Introduction

This paper is an overview of a research effort
which addresses some of the current problems in inter-
facing systems theory and reliability, and puts this
research in perspective with the opan questions in
this field. Reliability is a relative concept; it
is, roughly, the probability that a system will per-
form according to specifications for a given amount
of time. The motivating question behind this report
is: What constitutes a reliable system?

If a thecry were available which allowed a com=
parison between alternats designs, based on both the
expected system reliability and the expected system
performance, it would greatly simplify the curreant
design methodology. It is unfortunate that at pre-
sent there is no accepted methodology for a determin-
ation of expected system performance which accounts
for changes in the performance characteristics due
to failure, repair or reconfiguration of system func-
tions. This report presents such a methodology for
a specific class of linear systems with quadratic
cost criteria.

*This research was supported by the Fannie and John
Herts Poundation, NASA Amas grant NGL-22-009-]24,

i and AFOSR grant 77-3281. The work was performed

¥ wvhile J. D. Birdwell was a graduate student at

{ M.I.7T.
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Basically, the reliability of a system is the
probability that the system will perform according
to specifications for a given amount of time. In
a system-theoretic context, the specification which
a system must meet is stability; also, since, at
least for most mathematical models of systems, sta-
bility is a long-termattribute of the system, the
anount of time for which the system must remain
stable is taken to be infinite. Therefore, the
following definitions of system reliability are
used in this paper:

Definition 1: A system (implying the hardware con-
figuration, or mathematical model of that configu-
ration, and its associated control and estimation

structure) has rel r where r is the proba-
bility that the system will be stable for all time.

£, 2: A system is said to be reliable if
res
Definition 3: A system design, or configuration,

is reliable if it is stabilizable with probability
one.

These definitions of reliability depend on the de-
finition of stability, and for systems which can
have more than one mnde of operation, stability is
not that easy to determine. In this paper, stabi-
lity will mean either mean-square stability (over
some random space which will be left unspecified
for the moment), or cost-stability (again, an ex-
pectation over a certain random space), which is
basically the property that the accumulated cost
of system operation is bounded with probability
one. (The definition of cost is also deferred.)

The reliability of a system will depend on :
the reliabilities of its various components and on ) |
their interconnections. Thus, the systems engineer y
sust have an understanding of the probabilistic me-
chanisms of component failure, repair, and system
reconfiguration.

Component failures, repairs, and reconfigura-
tions are modeled in this paper by a Markov chain.
Only catastrophic changes in the system structure
are considered; degradations are not modeled. The
hazard rate is assuméd to be constant, resulting in 3
an exponential failure distribution. In the dis- R
crete~time case, to which this paper is confined g
exclusively, the hazard rate becomes the probabili-
ty of failure (or repair or reconfiguration) be-
tween time t and time t+l.

It is now necessary to define precisely the
operation and their dynamic transitions.

Systes configuration and
. S8 on and system structure
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Definition 4: tem Structure: A possible mode
of operation for a given system; the components,

their interconnections, and the information flow
hmqlmﬁggtm time.

Definition S: System Conf The original
sign of the system, .ccoun oz all modeled
modes of operation, and the Markov chain governing
the conf ation, or structural, cs (transi-
tions among the various structures). In this pa-
per, structures are referenced by convention by

the set of non-negative integers

6 U0 7 VK T (1.1)

An important question in reliability is the
effect of redundancy on system performance. In
other words, how should the allocation of control
resources be allocated to the redundant components,
and how should the component reliabilities affect
the choice of an optimal control law? The control
merhodologies presented in this paper answer the
question focr a specific class system configurations.
They yield & quantitative analysis of the effec~
tiveness of a given .system design, where effective-
ness is a quantity relating both the performance
and the reliability of a configuration design.

Previously, several authors have studied the
optimal control of systems with randomly varying
structure. Most notable among these is Wonham (1],
where the solution to the continuous time linear
regulator problem with randomly jumping parameters
is developed. This solution is similar to the dis-
crete time switching gain solution presented in
Section 3. Wonham also proves an existence result
for the steady-state optimal solution to the con-
trol of systems with randomly varying structure;
however, the conclusion is only sufficient; it is
not necessary. Similar results were obtained in
Beard (2] for the existence of a stabilizing gain,
where the structures wers of a highly specifis form;
these results were necessary and sufficient alge-
braic conditions, but cannot be readily generalized
to less specific classes of systems. Additional
work on the control problem for this class of sys-
tems has been done by Sworder (3], Rather & Luen-
berger (4], Bar-whalom & Sivan (5], Willner (6]
and Pierce & Sworder (7]. The dual problem of
state estimation with a system with random parame-
ter variations over a finite set was studied in
Chang & Athans [3].

Recently, the robustness of the linear qua-
dratic regulator has been studied by Wong, et. al.
(9] and Safonov & Athans (10]. Section 6 of this
paper gives necessary and sufficient conditions
for the existence of a robust linear constant gain
control law for a specific class of systems.

J Soms of the preliminary results on which this

'nMMMMWU\TbuM—

form at the 1977 Joint Automatic
ence in San Prancisco by Birdwell, and published
!o: the 1977 IEER Conference on Decision and Con-
in New Orleans by Birdwell & Athans
(111 ; .?z is based on the results in
(12

'm.n two major contributions of eh.l- e~
search. Pirst, the classification of a system de-~
sign as or has been equated
with the of a steady-state switching
gain and cost for that design. If this gain does

not exist, then the systesm design cannot be stabil-
ized; hence, it is unreliable. The only recourse
in such a case is to use more reliable components
and/or more redundancy. Reliability of a system
design can therefore be determined by a test for c
convergence of the set of coupled Riccati-like
equation as the final time goes to infinity.

The second major contribution lies in the ro-
bustness implications. Precisely, a constant gain
for a linear feedback control law for a set of li-
near systems is said to be robust if that gain
stabilizes each linear system individually, i.e.,
without regard to the configuration dynamics. The
problem of determining when such a gain exists,
and of finding a robust gain, can be formulated in
the context of this research. As a result, this
methodology gives an algorithm for determining a
robust gain for a set of lincar systems which is
optimal with respect to a quadratic cost criterion.
If the algorithm does not converge, then no robust
gain exists.

Por the purpose of brevity, most result will
be stated without proof. The reader may find thase
proofs in reference (12], and in the papers
curzrently in preparation.

2. Problem Statament

Consider the system

Beo1 " A%, * By (p) 8, (2.2
where
x_ c R (2.2)
-—
g, e & (2.3)
Aer™" (2.4)

and, for each k, an element of an indexing set I

xer=q{0,1,2, . . . ,L} (2.5)
A ¥ &7 (2.6)
where

B,.c(8,},.; (2.7
The index k(t) is a random variable taking values in
I which is governed by a Markov chain and

Zesr * L 3.4% (2.8)
LT (2.9)

where 't ¢ is the probability of k(t) = i, given no

on-line information about k(t), and 1r is the init-
ial distribution over I.

xeuwmemzommmot
events occurs at each time t:

1) x, is obeerved exactly
) then By (¢.y) Pvitches to B, ()
3) ghen u, is applied.
Consider the structure set (3.} .. indexed by

1. Define the structural trajectory ¥, to be a se-

quence of elements k(t) in I which select a specific
structure 8, ., &t time ¢,

;o. (k(0) , k(1) ,..0,k(T=1)) (2.10)
mmim‘,.ﬂ.mmm.
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with probability of occurance generated from the
Markov equation (2.8).

T=-1

pxy) = I = (2.11)
*p o RN
where the control interval is
{o,1,2,...,7-1,7} (2.12)

for the finite time problem with terminal time T.
Then for a given state and control trajectory

(5:'“ )t_oglmnudby(z l)lndx from a se-

quence of controls (g_e):_: ¢ the eo-e index is to
be the standard quadratic cost criterion
T=1
=1 T T T
e e edemo = I xR tucBu, omon
(2.13)

The cbjective is to choose a feedback control
law, which may depend on any past information about

X 0ru,. nppinq;c into .,
o+ K"+ 2" (2.14)
¢t L P8 4, (2.15)

such that the expected value of the cost function
from equation (2.13)

"r"(brl’-'o
is mininized over all possible mappings ¢, at g:

(2.16)

3. The Optimal Solution

Normally, a control law of the form (2.15)
must provide both a control and an estimation
function in this type of problem; hence the label

control is used. Here, the structure of the
problem allows the exact determination of k(t-l)

fromx, , x,_, for almost all values of Sep°

This result is stated in the following lemma
Lesma 1 (12]: For the set {B .} , .,  where the

B, 's are distinct, the set

(.51&..:4-1 “Ax, * 1, ‘-‘-e} k=0

to:a.'ln.tl.u.vu.l.uno!y_e

Ignoring the set of controls of measure zero
for which the members of

has distinct members

L
(Zx,e01) xmo Q.1

are not distinct, then for (almost) any control
which the optimal algorithm selects, the resulting
mtox can be compared with the members of the
3.5 ¥or an exact match (of which there is
a].yeuvtth probability 1), and k(t) is identi-
fied as the generator of that matching member

Eg,eo1°
Since perfect identification is the best any

:w!qum. uucenml.uu -

that k(t-1l) is known, since this is the case with
probability onc. Thus, this solution will be la-
beled the switc gain solution, since, for each
time t, L+l optimal solutions are calculated apriori,
and one solution is chosen on-line for each time t,

based on the past Reasurements x -t-lm (-

which yield perfect knowledge of k(t-l).

Dynamic programming is used to derive the op-
timal switching gain solution. It has been proved
(12] that at each time t, the optimal expected
cost-to-go, given the system structure k(t-1l), is

» 4
\4 (!_ k(t=1),t) = !ts (3.2)

Sx,eXe
where the S are determined by a set of L+l
coupled uc&&-m. equations (one for each possi-
ble configuration):

s 0§
Sxe "2 {I Pix S4,e01
T =
ik 24,en2 1][‘* PixB184,eh1 2y

A+Q (3.3)

[z,,
[

! -’-L,eﬂ]

The optimal control, given k(t-l) = k, is

.
2k.t- 3 [! *

f ’u: -1-1 es12Z,

T -1
f ’uhii.:ﬂ-‘-x]

(3.4)
Writing
»

B,e" Sk, e X 3.3
then
G --[Ri-xfp 3T s n]‘1
Zk,t ST e TR e %y

I Py 2y £, el e

t=1 i,
Thus, u' = Switching gain linear con-
gg_;gm&n &p.u. on k(t-1). The variable
k(t=1) is determined by
k(t=1) « 4 1ffx =Ax +8.u, 1.7

Note that the § t'-ummm
gkgmhmu‘ off-line and stored. Then

&t each time t, the proper gain is selected on-
line from k(t-1), using equation (3.7), as in
Pigure 1.

This solution is quite complex relative to
the structure of the usual linear quadratic solu-
tion. Each of the Riccati-like equations (3.7)
involves the same complexity as the Riccat! equa-
tion for the linear quadratic solution. Iu addi-
tion, there is the on-line complexity arising
from the implementation of gain scheduling. In
Section 4, a non-switching gain solution will be
presented which has an identical on-line struc-

St - e ——
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ture to that of the linear quadratic solution, but
has similar off-line computational complexity to
that of the switching gain solution. This non-
switching gain solution is suboptimal, but requires
less on-line complexity.

Pigure l: The switching gain control law.

A steady-state solution to equation (3.7) may
exist, but the conditions for its existence are
unknown. The steady-state solution would have the
advantage that only one set of gains need be stored
on-line, instead of requiring a set of gains to be
stored for each time t. Since the steady-state
solution is simply the value to which equation (3.7)
converges as it is iterated backward in time, at
present, the equations can be iterated numerically
until either they converge or meet some test of
non-convergence. The possibility of limit cycle
solutions in the switching gain computations is
excluded by the following lemma:

2 (12]: If the optimal expected cost-to-go
at time t is bounded for all t, then equation (3.7)
converges.

The existence of a steady-state solution to

can be used with iteration for the test.
4. The Non-switching Gain Solution
In this Section, the permissible controls are

8, Qggg (4.1)
matrix

g g by g T
Le. it depend on x o T, . ective
is to over the sat bf adilssible controls
the expectation of (2.13) where the expectation is
taken over the set of possible structural trajec-
tories
i, ¢f (4.2)

R —

and the set of initial conditions x . The re~

sulting control law will be a m--\atchhlq law,

using gains determined apriori. « .
Thus, the optimal™tomtrol law u_= G

t =t=t
should minimize the cost

i'”}rllo]
-1
T
=e| ] x.0x +u
t=0 t t

over the set of admissible controls.
Since the structure of u_=G_x £

the problem is equivalent to minimiking, in an

open-loop sense, the cost func

)

T
051251,'10 (4.4)

with respect to the gain matrix G ., t=0,1,...,T-1.

The matrix minimum principle o& thans (13] is
used to determine the necessary conditions for the
existence of u_ (or equivalently, G ). Let the
initial state be a zero mean r variable
which is Lndopu&ut of any structure. Let

h 7 - T
E.o = '(§g£°|1°] '(50501 (4.5)

be the covariance matrix of x , .
Doun.tnq:h.eovuimootgt as

T
£, "‘5:£e|1o’ (4.6)

and if we define

T
EL'g = .(!‘5 Ik(‘ 1)-"'10

then the matrix L!. ¢ can be defined recursively as
v

] (4.7)

L
ij el ” ;L' 4
Pyy", (ARG L, , (AR, G
. e Lzo 41 *t-!. j=t 24, j~¢
for t > 1. (4.8)
T
ij,g"ﬁ‘!’go L) (ﬁ’!jgo) (4.9)
and the relation
L
L.* ;Zo"e-x“" . €30 (4.10)

is obviocus from direct calculation.

m At this stage, an equivalent deterministic
(Problem AB) will be dafined with state

(£, ,){ag for £>0 and state I , at t=0. The
mth-h!u‘fby equations
(4.8) and (4.9).

Definition (Problem AE) ; Por the .yu.!\d.ﬂ\
na s or £>0 and §, for te0
with dynamical épthetdfs (4.8) ana (4.9 ana
matrix control G , e the equivalent deter-
niniseic cost over (G, )51 ¢

iR A o s s, 1

q
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e

- I tr(l (goc RG )] + ex(l Q] (4.11)

Note that since the expectation in equation (4.4)

is over all structural trajectories X and the ini-
tial X, also,

E
J,- JT (4.12)

The symbol J_ will be used exclusively in the fu-
ture. The Jo-lum. or instantaneocus, cost at
time t is

-
Tp=ex(l, (gogtﬁen (4.13)
Problem is completely deterministic in the

state (lt,t)i-o ' 50 and control G,

At this point, the minimization is decomposed
into two parts using the Principle of Optimality
(14]. The first minimization is over the interval
{1,2,...,7-1}, and for this the matrix minimum
principle will be used. The resulting solution
dopcadltnqm:uouehocholeootc and on the
initial conditions Lo and 7,

Let V' (G )bo:h.opu-nconnmunq
l:ueh.uu& mmm&-ﬂ.mgl.

»
83ee c - c,,_1 zec the interval (1,2,...,7}.

mwummungoocmm:

Jpmtrll, Q@+ 6o

»
, RG,) +V (G,) (4.14)

The Principle of Optimality states that these
mmm:.umnm:um-mn:mm
6°)T} for problem az.

-t M
From (Athans,13], the Hamiltonian for the min-
imization over {1,2,...,7-1} is

L L
*51.:’1-0' 24,e01) je0’ 2,)

T
wn,e,7) 1,,,,,]
for ¢ ¢ (1,2,3,..., T=1} (4.19)
L
vhere the costats matrix is 84,e01) 4u0°
From the necessary condition for the costate,
S, " ﬂ: (4.16)
L

the propagation of § backward in time is derived.

l.

T

S, ,=T Q+G. RG

i,t "t-]. - t

3 2.7

+ 1w B S, MG B S, . .1BG

jm0 ji 'trj .+l t=3=j,t+l=j=¢

T T |
’-“-ij ,e+1!39e"'°:'e jc+1"" (4.17)

This equation is well-defined for any sequence

{.}™! and £>0. The cost V of using this ar-
:znsouqunnc- over the interval {1,2,...,T} is
qimby

-1 %
VUG, )y ) = &F xgo 3,151 (4.18)
Define

L

' T T
s, izo (A*8 G ,)'8, | (A¥B G ) +Q+G R G,
(4.19)

Then the cost of a given
length T over the interval zo.h....‘t}'ﬂ
Jp=trll S,(5, Gy reeeilpy )] (4.20
From the Hamiltonian minimization necessary condi-
tion
3 .0 (4.21
—t -

ﬂntuowuq relation between I

8 » and
g, Seained. =i,t'=3,t4l

o zo tear Eie
+ f =% [(n"s 5.6 45"3 Al
=0 "e =j=j,trl=3=¢ J=j.eel =
L
Z Pyy ‘exz*"] (4.22)

Remark: At this point, a two-point boundary value
mmmmtmuehmmme (4.22)
relating equations (4.17) and (4.8). Equation
(4.22) is not explicitly solvable for G, because
L*gmutmdmofmm&upw

it cannot be used as a substitution rule in the
othochnquucu. At this time, the solution
mhmn. m-.uwm-
%adttuu!ormcimotat the
Mm have been established, t.hqdo
mm:uuovlo:mnlmuc
certainly do not admit a closed-form c:inum

S. Steady-State Non-Switching Gain Solutions

In this Section a modified version of Problem
A is solved which yields a computational methodo-
logy for computing the optimal steady-state non-
switching gain solutions. It will be establighed
that the solution to this modified problem con-
verges to the same limit as the problem in the

i SR
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last Section.

Definition 6: (Stability) G is a constant
-nu..uu.nq gain if and only "if the resulting system

“AX, *+ (s.1)

Zes1 -k(t) Ze
is mean-square stable:

Blx, 2710 ast~+o

Definition 7: (Cost-Stability)
:L= cost-stable if and only if

The system (5.1)

with probabilitv one.
The infinite-time problem is defined as a
minimization of

J = lim '11' (5.2)
Tee
where J the cost function for the correspond-

ing euﬁ.—u— probles. The sequence which
solves :go infinite-time versions of Problem AE
is (G when a solution exists. A solution
uu.ni'"uuun.u-uumotqms
for which the limit in equation (5.2) exists.
This definition of the infinite-time problem is
chosen rather than the definition requiring a
minimization of the average cost per unit time

) |
J.=1lim =J (5.3)
1 e T2
because there is a direct correlation between the
boundedness of J_ over all T for a constant se-
qunmotqtm"m-onmlubiutyot
the systea (S. Iy

The concepts of stability, cost-stability,
and existence of a steady-state solution are
related by the following lemmas (12]:

Lemma 3: A constant saquence of gains (_)
mean-square stabilizing if and only if mﬁ"oum
a bound B<® guch that J _<B ¥ T.

T
Lemma 4: Any sequence (G cost-stabilizes

T6.0) (with probability o&) if and only if J<=,

The steady-state solution for Problem AR is
defined as the limiting solution to equations (4.8)
(4.17) and (4.22) at time t, first as ™= and then
as t+» , if this limit exists. The steady-state
values for 3,

ety we ik e T Y
i"’la tzo’n'z @8,9 L, aa,@”
"z[g"“’ { Py v, Wekdlsne
(5.9)
L[tw DXRY

)j ,”_w‘; ](sc)

(5.4)

which are the limit of these oqunuonl, given that

the limiting solution tj cAﬂd G exist, where T
satisfies

TepW (5.7
and

lag =1 (5.8)
o

The following Theorem yields an explicit
procedure for the calculation of the steady-state
non-switching control law.

Theorem: Define the sequence (Gm t-o by the
following equations:

fr, 878, 8.7
-o’ 383,002y

gu (T) = =[R +
3
er BiSi e A (5.9)
for a given terminal time T and
Sns " LB Gy, @ (5.10)
where
T
e Sns B Sne, (5.11)
L
T '
s jzo Poe@ Sy os A*2S, ., 08,
" M S5
* S t—j—j senid * Gng i85 eey BySy, ) foF keI
;,mm -Q for keI (5.12)

(The parametsr (T) is suppressed on the right hand
side of equations (5.9 ) and (5.11).]
Then the following statements are equivalent.

1) The gain sequence (G ). cost-stabilizes
t

=0
Bepy" A2, %8, ()8,
2 | ::: kzo 'k.t-l"'k,t" oy

3) Acoce-lub.l.uu.um“qumom:u.

:Lum;m to Problem A, (Gt)t-o is cost-
in addition, if

5‘. =G, forallt (5.13)
g (.mu) exists

£ ™ g (5.14)

The proof can be found in Birdwell (12). The
derivation of equations (5.9),(5.11) and (S.12)
can be found in Birdwell and Athan (11] and Birdwell
(12]. A forthcoming paper will contain the complete
theorem and proof. Equation (5.9) to (S5.12) will
be refered to as the solutions to Problem
is described in (12] and is omitted here
lack of space. The results of this theorem

E;g
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give a direct computational procedurj for calcula-
ting the optimal steady state gain G as the limit
of gaing G__ . There are some questions as to the
poul.bm&'oz limit cycles on the calculation of
G __. However, thg theorem guarantees cost-stabi-
W using (gn'} emg Vhenever the system is

cos:-lubuiubfo .

6. Robustness

o The original problem (Problem A) can be fog-

mulated in such a way that the sequence (G ns, )t-O

will cost-stabilize a set of linear systems with

different actuator structures individually whenever
such a stabilizing or robust gain exists.

Definition 8: A gain G is robust if

X" A+B Ox, (6.1)

is stable for all k. This is the same as requiring
the matrix (A+B _G) to have eigenvalues inside the
unit circle for il k.

Corollary l: For the set of L+l systems

5"1'5’-‘-:’-'-1:32 (6.2)
with

=1 (6.3)
n - = (6,4)

if a robust gain exists, then (G ):_oil.

stabilizing sequence for (6.1) for Wach k, and if
the gains G (T) converge, then G__ is a robust
gain. —ns, g

Discussion: With Corollary 1, a specific existence
problem for robust linear gains is solved. Exis-
tence of a robust gain is made equivalent to the
existence of a finite cost infinite-time solution
to Problem B, which is readily computable from
equations (5.9) and (5.11).

Consider the system whose transitions are
shown in Pigure 2. The configuration dynamics are
modeled as being in any structural state with equal
probability of occurance initially and
in that state forever; this model is illustrated
graphically in 7igure 2.below.

76268AW030

@D
GCDw GDw

Pigure 2: Markov transition probabilities for
the Example.

The state dynamics are
T
LIRS T8 1O -

Be= (%) ¢ %3]

k(t) ¢ {0,1,2}
The cost to be minimized is

@
T
Je=E X.0x.+4
L-o B
The matrices are given by

2.71828 0.0 1. 0. oO.
A=
- Da

0.0 .3679

1.71828 1.71828
B,"

-.63212 .63212

0.0 1.71828 1.71828 0.0
.'_1. B. .=

0.0 .e3212| % |-.63212 0.0
For these matrices, equations (5. 9) and (5.11)
converge, giving the following results:

[-1.099 -.oouu]
G -
ns

-1.028 -.01444

i
ns =
gm0 '+ |a.992 6.835

A brief check will verify that this is indeed a
robust gain. The Riccati solutions for this problem
are

: 109.8 9.030 4 114.3 6.285
!on gl-
9.030 6.821 6.285 6.836

114.4 11.66

S.=
=2 l11.66 6.849

The non-switching solution converges for this
system, and the three resulting configurations are
stabilized. Thérefore G __is a robust gain. Had
the solution not com » by Corollary 1, no ro-
bust gain would exist. The apriori expected cost
(before the configuration state is known) is, given
X3

112.8 8.992
&

J-;rx

7. Conclusion

In conclusion, the unifying concept of this
report is: What constitutes a reliable control
system, or a reliable design? A major connection
was established in this ressarch between the con-
cepts of reliability and stabilizability. Itera-
tive procedures were developed for the determina-
tion of whether or not a given linear system of the
type considered in this report is reliable, with
respect to both non-switching and switching gain
controllers. A system design is reliable if and
only if the set of coupled Riccati-like matrix
difference equations for the switching gain solu-
tion converges. In addition, if the matrix differ-
ence equations converge for the non-switching gain
solution, then the non-switching control law yields

ChApos a3 v+
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a robust system; if they diverge, no robust gain
exists.

This paper is an overview of the results in
Birdwell (12]. Two papers in preparation will con-
tain the proofs of the results which are stated
here.
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